Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Sensors (Basel) ; 23(6)2023 Mar 08.
Article in English | MEDLINE | ID: covidwho-2283836

ABSTRACT

Non-contact temperature measurement of persons during an epidemic is the most preferred measurement option because of the safety of personnel and minimal possibility of spreading infection. The use of infrared (IR) sensors to monitor building entrances for infected persons has seen a major boom between 2020 and 2022 due to the COVID-19 epidemic, but with questionable results. This article does not deal with the precise determination of the temperature of an individual person but focuses on the possibility of using infrared cameras for monitoring the health of the population. The aim is to use large amounts of infrared data from many locations to provide information to epidemiologists so they can have better information about potential outbreaks. This paper focuses on the long-term monitoring of the temperature of passing persons inside public buildings and the search for the most appropriate tools for this purpose and is intended as the first step towards creating a useful tool for epidemiologists. As a classical approach, the identification of persons based on their characteristic temperature values over time throughout the day is used. These results are compared with the results of a method using artificial intelligence (AI) to evaluate temperature from simultaneously acquired infrared images. The advantages and disadvantages of both methods are discussed.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , COVID-19/epidemiology , Thermography/methods , Body Temperature , Temperature , Infrared Rays
2.
J Mater Chem B ; 9(47): 9642-9657, 2021 12 08.
Article in English | MEDLINE | ID: covidwho-1684136

ABSTRACT

Cancer is a growing threat to human beings. Traditional treatments for malignant tumors usually involve invasive means to healthy human tissues, such as surgical treatment and chemotherapy. In recent years the use of specific stimulus-responsive materials in combination with some non-contact, non-invasive stimuli can lead to better efficacy and has become an important area of research. It promises to develop personalized treatment systems for four types of physical stimuli: light, ultrasound, magnetic field, and temperature. Nanomaterials that are responsive to these stimuli can be used to enhance drug delivery, cancer treatment, and tissue engineering. This paper reviews the principles of the stimuli mentioned above, their effects on materials, and how they work with nanomaterials. For this aim, we focus on specific applications in controlled drug release, cancer therapy, tissue engineering, and virus detection, with particular reference to recent photothermal, photodynamic, sonodynamic, magnetothermal, radiation, and other types of therapies. It is instructive for the future development of stimulus-responsive nanomaterials for these aspects.


Subject(s)
Antineoplastic Agents/therapeutic use , Delayed-Action Preparations/therapeutic use , Metal Nanoparticles/therapeutic use , Neoplasms/drug therapy , Radiation-Sensitizing Agents/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/radiation effects , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/radiation effects , Humans , Infrared Rays , Magnetic Phenomena , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/radiation effects , SARS-CoV-2/isolation & purification , Temperature , Tissue Engineering/methods , Ultrasonic Waves , Viral Load/methods
3.
Sensors (Basel) ; 22(1)2021 Dec 29.
Article in English | MEDLINE | ID: covidwho-1615852

ABSTRACT

Infrared thermographs (IRTs) implemented according to standardized best practices have shown strong potential for detecting elevated body temperatures (EBT), which may be useful in clinical settings and during infectious disease epidemics. However, optimal IRT calibration methods have not been established and the clinical performance of these devices relative to the more common non-contact infrared thermometers (NCITs) remains unclear. In addition to confirming the findings of our preliminary analysis of clinical study results, the primary intent of this study was to compare methods for IRT calibration and identify best practices for assessing the performance of IRTs intended to detect EBT. A key secondary aim was to compare IRT clinical accuracy to that of NCITs. We performed a clinical thermographic imaging study of more than 1000 subjects, acquiring temperature data from several facial locations that, along with reference oral temperatures, were used to calibrate two IRT systems based on seven different regression methods. Oral temperatures imputed from facial data were used to evaluate IRT clinical accuracy based on metrics such as clinical bias (Δcb), repeatability, root-mean-square difference, and sensitivity/specificity. We proposed several calibration approaches designed to account for the non-uniform data density across the temperature range and a constant offset approach tended to show better ability to detect EBT. As in our prior study, inner canthi or full-face maximum temperatures provided the highest clinical accuracy. With an optimal calibration approach, these methods achieved a Δcb between ±0.03 °C with standard deviation (σΔcb) less than 0.3 °C, and sensitivity/specificity between 84% and 94%. Results of forehead-center measurements with NCITs or IRTs indicated reduced performance. An analysis of the complete clinical data set confirms the essential findings of our preliminary evaluation, with minor differences. Our findings provide novel insights into methods and metrics for the clinical accuracy assessment of IRTs. Furthermore, our results indicate that calibration approaches providing the highest clinical accuracy in the 37-38.5 °C range may be most effective for measuring EBT. While device performance depends on many factors, IRTs can provide superior performance to NCITs.


Subject(s)
Body Temperature , Thermography , Calibration , Fever , Humans , Infrared Rays , Thermometers
4.
Sci Rep ; 11(1): 22079, 2021 11 11.
Article in English | MEDLINE | ID: covidwho-1510625

ABSTRACT

Non-contact infrared thermometers (NCITs) are being widely used during the COVID-19 pandemic as a temperature-measurement tool for screening and isolating patients in healthcare settings, travelers at ports of entry, and the general public. To understand the accuracy of NCITs, a clinical study was conducted with 1113 adult subjects using six different commercially available NCIT models. A total of 60 NCITs were tested with 10 units for each model. The NCIT-measured temperature was compared with the oral temperature obtained using a reference oral thermometer. The mean difference between the reference thermometer and NCIT measurement (clinical bias) was different for each NCIT model. The clinical bias ranged from just under - 0.9 °C (under-reporting) to just over 0.2 °C (over-reporting). The individual differences ranged from - 3 to + 2 °C in extreme cases, with the majority of the differences between - 2 and + 1 °C. Depending upon the NCIT model, 48% to 88% of the individual temperature measurements were outside the labeled accuracy stated by the manufacturers. The sensitivity of the NCIT models for detecting subject's temperature above 38 °C ranged from 0 to 0.69. Overall, our results indicate that some NCIT devices may not be consistently accurate enough to determine if subject's temperature exceeds a specific threshold of 38 °C. Model-to-model variability and individual model accuracy in the displayed temperature were found to be outside of acceptable limits. Accuracy and credibility of the NCITs should be thoroughly evaluated before using them as an effective screening tool.


Subject(s)
COVID-19 , Fever/diagnosis , Thermometers , Adult , Body Temperature , COVID-19/diagnosis , Female , Humans , Infrared Rays , Male , Pandemics , Sensitivity and Specificity , Young Adult
5.
Int J Environ Res Public Health ; 18(20)2021 10 18.
Article in English | MEDLINE | ID: covidwho-1470882

ABSTRACT

Most humans depend on sunlight exposure to satisfy their requirements for vitamin D3. However, the destruction of the ozone layer in the past few decades has increased the risk of skin aging and wrinkling caused by excessive exposure to ultraviolet (UV) radiation, which may also promote the risk of skin cancer development. The promotion of public health recommendations to avoid sunlight exposure would reduce the risk of skin cancer, but it would also enhance the risk of vitamin D3 insufficiency/deficiency, which may cause disease development and progression. In addition, the ongoing global COVID-19 pandemic may further reduce sunlight exposure due to stay-at-home policies, resulting in difficulty in active and healthy aging. In this review article, we performed a literature search in PubMed and provided an overview of basic and clinical data regarding the impact of sunlight exposure and vitamin D3 on public health. We also discuss the potential mechanisms and clinical value of phototherapy with a full-spectrum light (notably blue, red, and near-infrared light) as an alternative to sunlight exposure, which may contribute to combating COVID-19 and promoting active and healthy aging in current aged/superaged societies.


Subject(s)
COVID-19 , Healthy Aging , Skin Neoplasms , Aged , Humans , Infrared Rays , Pandemics , Phototherapy , SARS-CoV-2 , Sunlight , Ultraviolet Rays , Vitamin D
6.
J Orthop Sci ; 27(6): 1333-1337, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1386096

ABSTRACT

BACKGROUND: Infrared thermography (IRT) for fever screening systems was introduced in not only general hospitals, but also orthopedic hospitals as a countermeasure against the spread of coronavirus disease 2019 (COVID-19). Despite the widespread use of IRT, various results have shown low and high efficacies, so the utility of IRT is controversial, especially in cold climates. The aims of this study were to investigate the utility of IRT in screening for fever in a cold climate and to devise suitable fever screening in orthopedic surgery for COVID-19. METHODS: A total of 390 orthopedic surgery patients were enrolled to the outdoor group and 210 hospital staff members were enrolled to the indoor group. Thermographic temperature at the front of the face in the outdoor group was immediately measured after entering our hospital from a cold outdoor environment. Measurements for the indoor group were made after staying in the hospital (environmental temperature, 28 °C) for at least 5 h. Body temperature was then measured using an axillary thermometer >15 min later in both groups. RESULTS: In the outdoor group, mean thermographic temperature was significantly lower than axillary temperature and IRT could not detect febrile patients with axillary temperatures >37.0 °C. Mean thermographic temperature was significantly lower in the outdoor group than in the indoor group. Sensitivity was 11.5% for the outdoor group, lower than that for the indoor group. CONCLUSIONS: We verified that IRT was not accurate in a cold climate. IRT is inadequate as a screening method to accurately detect febrile individuals, so we believe that stricter countermeasures for second screening need to be employed to prevent nosocomial infections and disease clusters of COVID-19, even in orthopedic hospitals.


Subject(s)
COVID-19 , Cold Climate , Humans , COVID-19/epidemiology , Infrared Rays , Fever/diagnosis , Fever/etiology , Thermography/methods
7.
J Cosmet Laser Ther ; 23(1-2): 1-7, 2021 Feb 17.
Article in English | MEDLINE | ID: covidwho-1323772

ABSTRACT

Social distancing is conducive to grow the impact of artificial light in the daily life of the worldwide population with reported consequences to the skin. Sunlight is also essential for human development, indeed, solar radiation is composed of different types of wavelengths, which generate different skin effects. It can be divided into ultraviolet (UV), infrared (IR), and visible. UV radiation (UVA and UVB) has cutaneous biological effects ranging from photoaging, immunosuppression to melanoma formation, through the production of reactive oxygen species (ROS), inflammation and elevation of the energy state of organic molecules, changing the DNA structure. IR radiation reaches deeper layers of the skin and is also related to the generation of ROS, photoaging and erythema while visible light is responsible for generating ROS, pigmentation, cytokine formation, and matrix metallopeptidases (MMPs). Furthermore, artificial light could be harmful to the skin, as it can generate ROS, hyperpigmentation, and stimulate photoaging. Currently, we briefly summarized the cutaneous biological effects of sunlight, as well as artificial light on skin and remarked the opportunity of the evolution of current photoprotective formulas through new strategies with broad spectrum protection.


Subject(s)
Skin , Sunscreening Agents , Humans , Infrared Rays , Sunlight , Ultraviolet Rays/adverse effects
8.
Sci Rep ; 11(1): 11901, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1260949

ABSTRACT

The COVID-19 pandemic has led to the rapid adoption and rollout of thermal camera-based Infrared Thermography (IRT) systems for fever detection. These systems use facial infrared emissions to detect individuals exhibiting an elevated core-body temperature, which is present in many symptomatic presentations of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Despite the rollout of these systems, there is little independent research supporting their efficacy. The primary objective of this study was to assess the precision and accuracy of IRT screening solutions in a real-world scenario. The method used was a single-centre, observational study investigating the agreement of three IRT systems compared to digital oral thermometer measurements of body temperature. Over 5 days, 107 measurements were taken from individuals wearing facial masks. During each entry, two measurements of the subject's body temperature were made from each system to allow for the evaluation of the measurement precision, followed by an oral thermometer measurement. Each participant also answered a short demographic survey. This study found that the precision of the IRT systems was wider than 0.3 °C claimed accuracy of two of the systems. This study also found that the IRT measurements were only weakly correlated to those of the oral temperature. Additionally, it was found that demographic characteristics (age, gender, and mask-type) impacted the measurement error. This study indicates that using IRT systems in front-line scenarios poses a potential risk, where a lack of measurement accuracy could possibly allow febrile individuals to pass through undetected. Further research is required into methods which could increase accuracy and improve the techniques viability.


Subject(s)
Body Temperature/physiology , COVID-19/prevention & control , SARS-CoV-2/pathogenicity , Skin Temperature/physiology , COVID-19/diagnosis , Humans , Infrared Rays , Mass Screening/methods , Thermometers
9.
Sensors (Basel) ; 21(11)2021 May 30.
Article in English | MEDLINE | ID: covidwho-1256635

ABSTRACT

During the COVID-19 pandemic, there has been a significant increase in the use of non-contact infrared devices for screening the body temperatures of people at the entrances of hospitals, airports, train stations, churches, schools, shops, sports centres, offices, and public places in general. The strong correlation between a high body temperature and SARS-CoV-2 infection has motivated the governments of several countries to restrict access to public indoor places simply based on a person's body temperature. Negating/allowing entrance to a public place can have a strong impact on people. For example, a cancer patient could be refused access to a cancer centre because of an incorrect high temperature measurement. On the other hand, underestimating an individual's body temperature may allow infected patients to enter indoor public places where it is much easier for the virus to spread to other people. Accordingly, during the COVID-19 pandemic, the reliability of body temperature measurements has become fundamental. In particular, a debated issue is the reliability of remote temperature measurements, especially when these are aimed at identifying in a quick and reliable way infected subjects. Working distance, body-device angle, and light conditions and many other metrological and subjective issues significantly affect the data acquired via common contactless infrared point thermometers, making the acquisition of reliable measurements at the entrance to public places a challenging task. The main objective of this work is to sensitize the community to the typical incorrect uses of infrared point thermometers, as well as the resulting drifts in measurements of body temperature. Using several commercial contactless infrared point thermometers, we performed four different experiments to simulate common scenarios in a triage emergency room. In the first experiment, we acquired several measurements for each thermometer without measuring the working distance or angle of inclination to show that, for some instruments, the values obtained can differ by 1 °C. In the second and third experiments, we analysed the impacts of the working distance and angle of inclination of the thermometers, respectively, to prove that only a few cm/degrees can cause drifts higher than 1 °C. Finally, in the fourth experiment, we showed that the light in the environment can also cause changes in temperature up to 0.5 °C. Ultimately, in this study, we quantitatively demonstrated that the working distance, angle of inclination, and light conditions can strongly impact temperature measurements, which could invalidate the screening results.


Subject(s)
COVID-19 , Thermometers , Body Temperature , Humans , Infrared Rays , Pandemics , Reproducibility of Results , SARS-CoV-2
10.
Public Health ; 194: 143-145, 2021 May.
Article in English | MEDLINE | ID: covidwho-1199034

ABSTRACT

OBJECTIVES: Between 2015 and 2019, 5700 excess deaths were observed during heatwaves in France. The summer of 2020 combined exceptionally high temperatures with the COVID-19 pandemic. The associated health impacts of this unique situation are described in this study. STUDY DESIGN: This is an observational study based on indicators of the French heat prevention plan. METHODS: Mortality and morbidity data during heatwaves were compared between 2020 and previous years, alongside COVID-19 in-hospital mortality. RESULTS: In total, 1921 additional deaths (+18.2%) were observed during the 2020 heatwaves, which is the largest number of deaths observed since 2003. Less than 100 deaths were attributed to COVID-19 during the heatwaves of 2020. CONCLUSIONS: Exceptionally high temperatures driven by climate change, combined with health inequities exacerbated by the COVID-19 outbreak, may have increased vulnerability to heat in 2020.


Subject(s)
COVID-19/mortality , Climate Change , Hot Temperature , Infrared Rays , Aged , Disease Outbreaks , France/epidemiology , Healthcare Disparities , Hospital Mortality , Humans , Middle Aged , Morbidity , Pandemics , SARS-CoV-2 , Seasons
13.
ACS Appl Bio Mater ; 4(5): 3937-3961, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1026805

ABSTRACT

Bacterial infection is a universal threat to public health, which not only causes many serious diseases but also exacerbates the condition of the patients of cancer, pandemic diseases, e.g., COVID-19, and so on. Antibiotic therapy has been used to be an effective way for common bacterial disinfection. However, due to the misuse and abuse of antibiotics, more and more antibiotic-resistant bacteria have emerged as fatal threats to human beings. At present, more than 700,000 patients die every year with bacterial infections because of the lack of effective treatment. It is frustrating that the pace of development of antibiotics lags far behind that of bacterial resistance, with an estimation of 10 million deaths per year from bacterial infections after 2050. Facing such a rigorous challenge, approaches for bacterial disinfection are urgently demanded. The recently developed near-infrared (NIR) light-irradiation-based bacterial disinfection is highly promising to shatter bacterial resistance by employing NIR light-responsive materials as mediums to generate antibacterial factors such as heat, reactive oxygen species (ROS), and so on. This treatment approach is proved to be a potent candidate to accurately realize spatiotemporal control, while effectively eradicating multidrug-resistant bacteria and inhibiting antibiotic resistance. Herein, we summarize the latest progress of NIR light-based bacterial disinfection. Ultimately, current challenges and perspectives in this field are discussed.


Subject(s)
Bacteria/radiation effects , Disinfection/methods , Infrared Rays , Nanomedicine/trends , Bacterial Infections/prevention & control , Humans , Photochemotherapy , Photothermal Therapy
14.
Eur J Clin Invest ; 51(3): e13474, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-991347

ABSTRACT

INTRODUCTION: Despite being widely used as a screening tool, a rigorous scientific evaluation of infrared thermography for the diagnosis of minimally symptomatic patients suspected of having COVID-19 infection has not been performed. METHODS: A consecutive sample of 60 adult individuals with a history of close contact with COVID-19 infected individuals and mild respiratory symptoms for less than 7 days and 20 confirmed COVID-19 negative healthy volunteers were enrolled in the study. Infrared thermograms of the face were obtained with a mobile camera, and RT-PCR was used as the reference standard test to diagnose COVID-19 infection. Temperature values and distribution of the face of healthy volunteers and patients with and without COVID-19 infection were then compared. RESULTS: Thirty-four patients had an RT-PCR confirmed diagnosis of COVID-19 and 26 had negative test results. The temperature asymmetry between the lacrimal caruncles and the forehead was significantly higher in COVID-19 positive individuals. Through a random forest analysis, a cut-off value of 0.55°C was found to discriminate with an 82% accuracy between patients with and without COVID-19 confirmed infection. CONCLUSIONS: Among adults with a history of COVID-19 exposure and mild respiratory symptoms, a temperature asymmetry of ≥ 0.55°C between the lacrimal caruncle and the forehead is highly suggestive of COVID-19 infection. This finding questions the widespread use of the measurement of absolute temperature values of the forehead as a COVID-19 screening tool.


Subject(s)
Body Temperature , COVID-19/diagnosis , Eye , Forehead , Thermography/methods , Adult , COVID-19/physiopathology , COVID-19 Nucleic Acid Testing , Case-Control Studies , Female , Humans , Infrared Rays , Machine Learning , Male , Middle Aged , Multivariate Analysis , Prospective Studies , SARS-CoV-2 , Severity of Illness Index
15.
PLoS One ; 15(11): e0241843, 2020.
Article in English | MEDLINE | ID: covidwho-945347

ABSTRACT

BACKGROUND: The measurement of body temperature has become commonplace in the current COVID-19 pandemic. Body temperature can be measured using thermal infrared imaging, a safe, non-contact method that relies on the emissivity of the skin being known to provide accurate readings. Skin pigmentation affects the absorption of visible light and enables us to see variations in skin colour. Pigmentation may also affect the absorption of infrared radiation and thus affect thermal imaging. Human skin has an accepted emissivity of 0.98 but the effect of different skin pigmentation on this value is not known. In this study, we investigated the influence of different skin pigmentation on thermal emissivity in 65 adult volunteers. METHODS: A reference object of known emissivity (electrical tape) was applied to participant's skin on the inner upper arm. Tape and arm were imaged simultaneously using a thermal infrared camera. The emissivity was set on the camera to the known value for electrical tape. The emissivity was altered manually until the skin temperature using thermal imaging software was equal to the initial tape temperature. This provided the calculated emissivity value of the skin. Participants were grouped according to skin pigmentation, quantified using the Fitzpatrick skin phototyping scale and reflectance spectrophotometry. Differences in emissivity values between skin pigmentation groups were assessed by one-way ANOVA. RESULTS: The mean calculated emissivity for the 65 participants was 0.972 (range 0.96-0.99). No significant differences in emissivity were observed between participants when grouped by skin pigmentation according to the Fitzpatrick scale (p = 0.859) or reflectance spectrophotometry (p = 0.346). CONCLUSION: These data suggest that skin pigmentation does not affect thermal emissivity measurement of skin temperature using thermal infrared imaging. This study will aid further research into the application of thermal infrared imaging as a screening or bedside diagnostic tool in clinical practice.


Subject(s)
Infrared Rays , Skin Pigmentation , Skin Temperature , Thermography/methods , Adult , Aged , COVID-19/diagnosis , COVID-19/virology , Ethnicity , Female , Healthy Volunteers , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Spectrophotometry/methods , Young Adult
16.
J Korean Med Sci ; 35(44): e389, 2020 Nov 16.
Article in English | MEDLINE | ID: covidwho-926491

ABSTRACT

Between August 31st and September 4th 2020 in a tertiary care hospital in Seoul, the fever detection rate by infrared thermoscanning camera at the gates was 0.002% (95% confidence interval [CI], 0.001%-0.006%) and that by manual fever check at the outpatient clinics was 0.02% (95% CI, 0.01%-0.03%) (P < 0.001). The difference strongly suggests that sensitivity of the thermoscanning camera in the market must be upgraded.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Fever/diagnosis , Pneumonia, Viral/epidemiology , COVID-19 , Hospitals , Humans , Infrared Rays , Pandemics , SARS-CoV-2 , Sensitivity and Specificity
17.
J Med Eng Technol ; 44(8): 468-471, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-800821

ABSTRACT

COVID-19 pandemics required a reorganisation of social spaces to prevent the spread of the virus. Due to the common presence of fever in the symptomatic patients, temperature measurement is one of the most common screening protocols. Indeed, regulations in many countries require temperature measurements before entering shops, workplaces, and public buildings. Due to the necessity of providing rapid non-contact and non-invasive protocols to measure body temperature, infra-red thermometry is mostly used. Many countries are now facing the need to organise the return to school and universities in the COVID-19 era, which require solutions to prevent the risk of contagion between students and/or teachers and technical/administrative staff. This paper highlights and discusses some of the strengths and limitations of infra-red cameras, including the site of measurements and the influence of the environment, and recommends to be careful to consider such measurements as a single "safety rule" for a good return to normality.


Subject(s)
Body Temperature/physiology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Schools , Betacoronavirus , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Fever/diagnosis , Humans , Infrared Rays , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , SARS-CoV-2 , Thermography
19.
J Biomed Opt ; 25(9)2020 09.
Article in English | MEDLINE | ID: covidwho-760198

ABSTRACT

SIGNIFICANCE: Infrared thermographs (IRTs) have been used for fever screening during infectious disease epidemics, including severe acute respiratory syndrome, Ebola virus disease, and coronavirus disease 2019 (COVID-19). Although IRTs have significant potential for human body temperature measurement, the literature indicates inconsistent diagnostic performance, possibly due to wide variations in implemented methodology. A standardized method for IRT fever screening was recently published, but there is a lack of clinical data demonstrating its impact on IRT performance. AIM: Perform a clinical study to assess the diagnostic effectiveness of standardized IRT-based fever screening and evaluate the effect of facial measurement location. APPROACH: We performed a clinical study of 596 subjects. Temperatures from 17 facial locations were extracted from thermal images and compared with oral thermometry. Statistical analyses included calculation of receiver operating characteristic (ROC) curves and area under the curve (AUC) values for detection of febrile subjects. RESULTS: Pearson correlation coefficients for IRT-based and reference (oral) temperatures were found to vary strongly with measurement location. Approaches based on maximum temperatures in either inner canthi or full-face regions indicated stronger discrimination ability than maximum forehead temperature (AUC values of 0.95 to 0.97 versus 0.86 to 0.87, respectively) and other specific facial locations. These values are markedly better than the vast majority of results found in prior human studies of IRT-based fever screening. CONCLUSION: Our findings provide clinical confirmation of the utility of consensus approaches for fever screening, including the use of inner canthi temperatures, while also indicating that full-face maximum temperatures may provide an effective alternate approach.


Subject(s)
Body Temperature , Coronavirus Infections/diagnosis , Face/physiology , Fever/diagnosis , Pneumonia, Viral/diagnosis , Thermography/methods , Adolescent , Adult , Aged , Area Under Curve , Betacoronavirus , COVID-19 , Female , Humans , Infrared Rays , Male , Mass Screening/methods , Middle Aged , Pandemics , Practice Guidelines as Topic , ROC Curve , Reproducibility of Results , SARS-CoV-2 , Young Adult
20.
Photochem Photobiol Sci ; 19(10): 1262-1270, 2020 Oct 14.
Article in English | MEDLINE | ID: covidwho-722560

ABSTRACT

The COVID-19 pandemic has sparked a demand for safe and highly effective decontamination techniques for both personal protective equipment (PPE) and hospital and operating rooms. The gradual lifting of lockdown restrictions warrants the expansion of these measures into the outpatient arena. Ultraviolet C (UVC) radiation has well-known germicidal properties and is among the most frequently reported decontamination techniques used today. However, there is evidence that wavelengths beyond the traditional 254 nm UVC - namely far UVC (222 nm), ultraviolet B, ultraviolet A, visible light, and infrared radiation - have germicidal properties as well. This review will cover current literature regarding the germicidal effects of wavelengths ranging from UVC through the infrared waveband with an emphasis on their activity against viruses, and their potential applicability in the healthcare setting for general decontamination during an infectious outbreak.


Subject(s)
Betacoronavirus/radiation effects , Disinfection/methods , Ultraviolet Rays , Adenoviridae/radiation effects , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Influenza A Virus, H1N1 Subtype/radiation effects , Infrared Rays , Light , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL